Reg. No.:	
-----------	--

Question Paper Code: 20369

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2018.

Fifth/Eighth Semester

Computer Science and Engineering

CS 6503 - THEORY OF COMPUTATION

(Common to Information Technology)

(Regulations 2013)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —
$$(10 \times 2 = 20 \text{ marks})$$

- 1. Give the difference between a deterministic finite automaton (DFA) and a non deterministic finite automaton (NDFA).
- 2. State pumping lemma for regular languages.
- 3. Consider the context-free grammar (CFG) given below. Give the leftmost derivation for the string *bbaa* using the grammar.

$$S \to bS |aT| \in$$

$$T \rightarrow aT|bU| \in$$

$$U \to aT \in$$

- 4. Show that the following grammar is ambiguous: $S \to SbS | a$.
- 5. What is an instantaneous description (ID) of a push down automaton (PDA)?
- 6. Convert the following CFG to a push down automaton:

$$S \to aS |bS| a |b.$$

- 7. Differentiate multihead and multitape Turing machines.
- 8. Give the Chomskian hierarchy of languages.
- 9. If L and its complement are recursively enumerable languages, prove that L is recursive.
- 10. Define the primitive recursion operation.

11. (a) Convert the following ∈-NFA to NFA and then convert the resultant NFA to DFA. (13)

- (b) (i) Prove that a language L is accepted by some NDFA if and only if L is accepted by some DFA. (6)
 - (ii) Minimize the following automaton: (7)

12. (a) Simplify the following grammar by eliminating null productions, unit productions and useless symbols and then convert to Chomsky Normal Form (CNF). (13)

$$S \to ABC \mid Ba\dot{B}$$

$$A \rightarrow aA | BaC | aaa$$

$$B \to bBb \,|\, a \,|\, D$$

$$C \rightarrow CA \mid AC$$

$$D \rightarrow \in$$

Or

(b) Convert the following grammar to Greibach normal form (GNF): (13) $S \to A \, B, A \to B \, S \, | \, b, B \to S \, A \, | \, a \, .$

h			
13.	(a)	(i)	Prove that the language $L = \{a^n b^n c^n n > 1\}$ is not context free
			using pumping lemma: (8)
		(ii)	What is a deterministic push down automaton? Comment on the language accepting capabilities of a deterministic push down automaton. (5)
	£ .		Or
	(b)	Conv	vert the following PDA M to CFG: (13)
		M =	$=(\{q_0,q_1\},\{0,1\},\{X,Z_0\},\delta,q_0,Z_0,\Phi) \ ext{and} \ \delta \ ext{is given by}$
*		$\delta(q_0$	$(0, Z_0) = \{(q_0, XZ_0)\}, \delta(q_1, 1, X) = \{(q_1, \in)\},$
		$\delta(q_0$	$(0, X) = \{(q_0, XX)\}, \delta(q_1, \in, X) = \{(q_1, \in)\},$
		$\delta(q_0$	$(1, X) = \{(q_1, \in)\}, \delta(q_1, \in, Z_0) = \{(q_1, \in)\}.$
14.	(a)	(i)	Give the five-tuple representation of a Turing machine and explain the representation. Define the language accepted by a Turing machine. (5)
		(ii)	Consider the following Turing machine $M = (\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \{0, 1, X, B\}, \delta, q_1, B, q_4)$ where δ is given as
			$\delta(q_1, 0) = (q_2, X, R)$ $\delta(q_2, 0) = (q_2, X, R)$. $\delta(q_2, 1) = (q_3, X, R)$ $\delta(q_3, 0) = (q_2, X, R)$ $\delta(q_3, 1) = (q_3, X, R)$ $\delta(q_3, R) = (q_4, X, R)$
			What will be the initial and final configurations of the Turing machine for the input string w = 0101? (8)
			Or
	(b)		sign a Turing machine that accepts the language $L = \{ss \mid s \text{ is in } b\}^*\}$.
15.	(a)	(i)	If L1 and L2 are recursively enumerable languages, prove that the union of L1 and L2 is also recursively enumerable. (8)
	1 7	(ii)	Write notes on polynomial-time reductions. (5)
			Or
	(b)	Wh	nat is a universal Turing Machine? Explain the procedure to construct

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Give the regular expression of the language generated by the context free grammar (CFG) given below:

$$S \rightarrow aS \mid bS \mid a \mid b$$

Convert the regular expression to an \in -NFA.

- (7)
- (b) Design a Turing machine that accepts the language $L = \{a^n b^n c^n | n >= 1\}$.

(8)